3.735 \(\int \frac{\cot ^8(c+d x) \csc (c+d x)}{(a+a \sin (c+d x))^2} \, dx\)

Optimal. Leaf size=176 \[ \frac{2 \cot ^7(c+d x)}{7 a^2 d}+\frac{2 \cot ^5(c+d x)}{5 a^2 d}-\frac{11 \tanh ^{-1}(\cos (c+d x))}{128 a^2 d}-\frac{\cot ^3(c+d x) \csc ^5(c+d x)}{8 a^2 d}-\frac{\cot ^3(c+d x) \csc ^3(c+d x)}{6 a^2 d}+\frac{\cot (c+d x) \csc ^5(c+d x)}{16 a^2 d}+\frac{7 \cot (c+d x) \csc ^3(c+d x)}{64 a^2 d}-\frac{11 \cot (c+d x) \csc (c+d x)}{128 a^2 d} \]

[Out]

(-11*ArcTanh[Cos[c + d*x]])/(128*a^2*d) + (2*Cot[c + d*x]^5)/(5*a^2*d) + (2*Cot[c + d*x]^7)/(7*a^2*d) - (11*Co
t[c + d*x]*Csc[c + d*x])/(128*a^2*d) + (7*Cot[c + d*x]*Csc[c + d*x]^3)/(64*a^2*d) - (Cot[c + d*x]^3*Csc[c + d*
x]^3)/(6*a^2*d) + (Cot[c + d*x]*Csc[c + d*x]^5)/(16*a^2*d) - (Cot[c + d*x]^3*Csc[c + d*x]^5)/(8*a^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.407361, antiderivative size = 176, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 7, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.259, Rules used = {2875, 2873, 2611, 3768, 3770, 2607, 14} \[ \frac{2 \cot ^7(c+d x)}{7 a^2 d}+\frac{2 \cot ^5(c+d x)}{5 a^2 d}-\frac{11 \tanh ^{-1}(\cos (c+d x))}{128 a^2 d}-\frac{\cot ^3(c+d x) \csc ^5(c+d x)}{8 a^2 d}-\frac{\cot ^3(c+d x) \csc ^3(c+d x)}{6 a^2 d}+\frac{\cot (c+d x) \csc ^5(c+d x)}{16 a^2 d}+\frac{7 \cot (c+d x) \csc ^3(c+d x)}{64 a^2 d}-\frac{11 \cot (c+d x) \csc (c+d x)}{128 a^2 d} \]

Antiderivative was successfully verified.

[In]

Int[(Cot[c + d*x]^8*Csc[c + d*x])/(a + a*Sin[c + d*x])^2,x]

[Out]

(-11*ArcTanh[Cos[c + d*x]])/(128*a^2*d) + (2*Cot[c + d*x]^5)/(5*a^2*d) + (2*Cot[c + d*x]^7)/(7*a^2*d) - (11*Co
t[c + d*x]*Csc[c + d*x])/(128*a^2*d) + (7*Cot[c + d*x]*Csc[c + d*x]^3)/(64*a^2*d) - (Cot[c + d*x]^3*Csc[c + d*
x]^3)/(6*a^2*d) + (Cot[c + d*x]*Csc[c + d*x]^5)/(16*a^2*d) - (Cot[c + d*x]^3*Csc[c + d*x]^5)/(8*a^2*d)

Rule 2875

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Dist[(a/g)^(2*m), Int[((g*Cos[e + f*x])^(2*m + p)*(d*Sin[e + f*x])^n)/(a - b*Sin[e +
 f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[m, 0]

Rule 2873

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 2611

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(a*Sec[e
+ f*x])^m*(b*Tan[e + f*x])^(n - 1))/(f*(m + n - 1)), x] - Dist[(b^2*(n - 1))/(m + n - 1), Int[(a*Sec[e + f*x])
^m*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && Integers
Q[2*m, 2*n]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2607

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

\begin{align*} \int \frac{\cot ^8(c+d x) \csc (c+d x)}{(a+a \sin (c+d x))^2} \, dx &=\frac{\int \cot ^4(c+d x) \csc ^5(c+d x) (a-a \sin (c+d x))^2 \, dx}{a^4}\\ &=\frac{\int \left (a^2 \cot ^4(c+d x) \csc ^3(c+d x)-2 a^2 \cot ^4(c+d x) \csc ^4(c+d x)+a^2 \cot ^4(c+d x) \csc ^5(c+d x)\right ) \, dx}{a^4}\\ &=\frac{\int \cot ^4(c+d x) \csc ^3(c+d x) \, dx}{a^2}+\frac{\int \cot ^4(c+d x) \csc ^5(c+d x) \, dx}{a^2}-\frac{2 \int \cot ^4(c+d x) \csc ^4(c+d x) \, dx}{a^2}\\ &=-\frac{\cot ^3(c+d x) \csc ^3(c+d x)}{6 a^2 d}-\frac{\cot ^3(c+d x) \csc ^5(c+d x)}{8 a^2 d}-\frac{3 \int \cot ^2(c+d x) \csc ^5(c+d x) \, dx}{8 a^2}-\frac{\int \cot ^2(c+d x) \csc ^3(c+d x) \, dx}{2 a^2}-\frac{2 \operatorname{Subst}\left (\int x^4 \left (1+x^2\right ) \, dx,x,-\cot (c+d x)\right )}{a^2 d}\\ &=\frac{\cot (c+d x) \csc ^3(c+d x)}{8 a^2 d}-\frac{\cot ^3(c+d x) \csc ^3(c+d x)}{6 a^2 d}+\frac{\cot (c+d x) \csc ^5(c+d x)}{16 a^2 d}-\frac{\cot ^3(c+d x) \csc ^5(c+d x)}{8 a^2 d}+\frac{\int \csc ^5(c+d x) \, dx}{16 a^2}+\frac{\int \csc ^3(c+d x) \, dx}{8 a^2}-\frac{2 \operatorname{Subst}\left (\int \left (x^4+x^6\right ) \, dx,x,-\cot (c+d x)\right )}{a^2 d}\\ &=\frac{2 \cot ^5(c+d x)}{5 a^2 d}+\frac{2 \cot ^7(c+d x)}{7 a^2 d}-\frac{\cot (c+d x) \csc (c+d x)}{16 a^2 d}+\frac{7 \cot (c+d x) \csc ^3(c+d x)}{64 a^2 d}-\frac{\cot ^3(c+d x) \csc ^3(c+d x)}{6 a^2 d}+\frac{\cot (c+d x) \csc ^5(c+d x)}{16 a^2 d}-\frac{\cot ^3(c+d x) \csc ^5(c+d x)}{8 a^2 d}+\frac{3 \int \csc ^3(c+d x) \, dx}{64 a^2}+\frac{\int \csc (c+d x) \, dx}{16 a^2}\\ &=-\frac{\tanh ^{-1}(\cos (c+d x))}{16 a^2 d}+\frac{2 \cot ^5(c+d x)}{5 a^2 d}+\frac{2 \cot ^7(c+d x)}{7 a^2 d}-\frac{11 \cot (c+d x) \csc (c+d x)}{128 a^2 d}+\frac{7 \cot (c+d x) \csc ^3(c+d x)}{64 a^2 d}-\frac{\cot ^3(c+d x) \csc ^3(c+d x)}{6 a^2 d}+\frac{\cot (c+d x) \csc ^5(c+d x)}{16 a^2 d}-\frac{\cot ^3(c+d x) \csc ^5(c+d x)}{8 a^2 d}+\frac{3 \int \csc (c+d x) \, dx}{128 a^2}\\ &=-\frac{11 \tanh ^{-1}(\cos (c+d x))}{128 a^2 d}+\frac{2 \cot ^5(c+d x)}{5 a^2 d}+\frac{2 \cot ^7(c+d x)}{7 a^2 d}-\frac{11 \cot (c+d x) \csc (c+d x)}{128 a^2 d}+\frac{7 \cot (c+d x) \csc ^3(c+d x)}{64 a^2 d}-\frac{\cot ^3(c+d x) \csc ^3(c+d x)}{6 a^2 d}+\frac{\cot (c+d x) \csc ^5(c+d x)}{16 a^2 d}-\frac{\cot ^3(c+d x) \csc ^5(c+d x)}{8 a^2 d}\\ \end{align*}

Mathematica [A]  time = 0.894743, size = 291, normalized size = 1.65 \[ -\frac{\csc ^8(c+d x) \left (-86016 \sin (2 (c+d x))-64512 \sin (4 (c+d x))-12288 \sin (6 (c+d x))+1536 \sin (8 (c+d x))+158270 \cos (c+d x)+77210 \cos (3 (c+d x))-18130 \cos (5 (c+d x))-2310 \cos (7 (c+d x))-40425 \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )-64680 \cos (2 (c+d x)) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )+32340 \cos (4 (c+d x)) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )-9240 \cos (6 (c+d x)) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )+1155 \cos (8 (c+d x)) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )+40425 \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )+64680 \cos (2 (c+d x)) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )-32340 \cos (4 (c+d x)) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )+9240 \cos (6 (c+d x)) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )-1155 \cos (8 (c+d x)) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )\right )}{1720320 a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cot[c + d*x]^8*Csc[c + d*x])/(a + a*Sin[c + d*x])^2,x]

[Out]

-(Csc[c + d*x]^8*(158270*Cos[c + d*x] + 77210*Cos[3*(c + d*x)] - 18130*Cos[5*(c + d*x)] - 2310*Cos[7*(c + d*x)
] + 40425*Log[Cos[(c + d*x)/2]] - 64680*Cos[2*(c + d*x)]*Log[Cos[(c + d*x)/2]] + 32340*Cos[4*(c + d*x)]*Log[Co
s[(c + d*x)/2]] - 9240*Cos[6*(c + d*x)]*Log[Cos[(c + d*x)/2]] + 1155*Cos[8*(c + d*x)]*Log[Cos[(c + d*x)/2]] -
40425*Log[Sin[(c + d*x)/2]] + 64680*Cos[2*(c + d*x)]*Log[Sin[(c + d*x)/2]] - 32340*Cos[4*(c + d*x)]*Log[Sin[(c
 + d*x)/2]] + 9240*Cos[6*(c + d*x)]*Log[Sin[(c + d*x)/2]] - 1155*Cos[8*(c + d*x)]*Log[Sin[(c + d*x)/2]] - 8601
6*Sin[2*(c + d*x)] - 64512*Sin[4*(c + d*x)] - 12288*Sin[6*(c + d*x)] + 1536*Sin[8*(c + d*x)]))/(1720320*a^2*d)

________________________________________________________________________________________

Maple [B]  time = 0.194, size = 322, normalized size = 1.8 \begin{align*}{\frac{1}{2048\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{8}}-{\frac{1}{448\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{7}}+{\frac{1}{384\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{6}}+{\frac{1}{320\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{5}}-{\frac{3}{256\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}}+{\frac{1}{64\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}-{\frac{1}{128\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}-{\frac{3}{64\,d{a}^{2}}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }+{\frac{1}{448\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-7}}+{\frac{3}{64\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}}-{\frac{1}{2048\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-8}}-{\frac{1}{320\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-5}}+{\frac{3}{256\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-4}}+{\frac{11}{128\,d{a}^{2}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) }-{\frac{1}{384\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-6}}-{\frac{1}{64\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}}+{\frac{1}{128\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^8*csc(d*x+c)^9/(a+a*sin(d*x+c))^2,x)

[Out]

1/2048/d/a^2*tan(1/2*d*x+1/2*c)^8-1/448/d/a^2*tan(1/2*d*x+1/2*c)^7+1/384/d/a^2*tan(1/2*d*x+1/2*c)^6+1/320/d/a^
2*tan(1/2*d*x+1/2*c)^5-3/256/d/a^2*tan(1/2*d*x+1/2*c)^4+1/64/d/a^2*tan(1/2*d*x+1/2*c)^3-1/128/d/a^2*tan(1/2*d*
x+1/2*c)^2-3/64/d/a^2*tan(1/2*d*x+1/2*c)+1/448/d/a^2/tan(1/2*d*x+1/2*c)^7+3/64/d/a^2/tan(1/2*d*x+1/2*c)-1/2048
/d/a^2/tan(1/2*d*x+1/2*c)^8-1/320/d/a^2/tan(1/2*d*x+1/2*c)^5+3/256/d/a^2/tan(1/2*d*x+1/2*c)^4+11/128/d/a^2*ln(
tan(1/2*d*x+1/2*c))-1/384/d/a^2/tan(1/2*d*x+1/2*c)^6-1/64/d/a^2/tan(1/2*d*x+1/2*c)^3+1/128/d/a^2/tan(1/2*d*x+1
/2*c)^2

________________________________________________________________________________________

Maxima [B]  time = 1.09685, size = 479, normalized size = 2.72 \begin{align*} -\frac{\frac{\frac{10080 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac{1680 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac{3360 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{2520 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac{672 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac{560 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac{480 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - \frac{105 \, \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}}}{a^{2}} - \frac{18480 \, \log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}} - \frac{{\left (\frac{480 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{560 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac{672 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{2520 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac{3360 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac{1680 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac{10080 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - 105\right )}{\left (\cos \left (d x + c\right ) + 1\right )}^{8}}{a^{2} \sin \left (d x + c\right )^{8}}}{215040 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^8*csc(d*x+c)^9/(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/215040*((10080*sin(d*x + c)/(cos(d*x + c) + 1) + 1680*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 3360*sin(d*x +
c)^3/(cos(d*x + c) + 1)^3 + 2520*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - 672*sin(d*x + c)^5/(cos(d*x + c) + 1)^5
 - 560*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 480*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 - 105*sin(d*x + c)^8/(cos
(d*x + c) + 1)^8)/a^2 - 18480*log(sin(d*x + c)/(cos(d*x + c) + 1))/a^2 - (480*sin(d*x + c)/(cos(d*x + c) + 1)
- 560*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 672*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 2520*sin(d*x + c)^4/(cos
(d*x + c) + 1)^4 - 3360*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 + 1680*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 10080
*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 - 105)*(cos(d*x + c) + 1)^8/(a^2*sin(d*x + c)^8))/d

________________________________________________________________________________________

Fricas [A]  time = 1.19628, size = 655, normalized size = 3.72 \begin{align*} \frac{2310 \, \cos \left (d x + c\right )^{7} + 490 \, \cos \left (d x + c\right )^{5} - 8470 \, \cos \left (d x + c\right )^{3} - 1155 \,{\left (\cos \left (d x + c\right )^{8} - 4 \, \cos \left (d x + c\right )^{6} + 6 \, \cos \left (d x + c\right )^{4} - 4 \, \cos \left (d x + c\right )^{2} + 1\right )} \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) + 1155 \,{\left (\cos \left (d x + c\right )^{8} - 4 \, \cos \left (d x + c\right )^{6} + 6 \, \cos \left (d x + c\right )^{4} - 4 \, \cos \left (d x + c\right )^{2} + 1\right )} \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) - 1536 \,{\left (2 \, \cos \left (d x + c\right )^{7} - 7 \, \cos \left (d x + c\right )^{5}\right )} \sin \left (d x + c\right ) + 2310 \, \cos \left (d x + c\right )}{26880 \,{\left (a^{2} d \cos \left (d x + c\right )^{8} - 4 \, a^{2} d \cos \left (d x + c\right )^{6} + 6 \, a^{2} d \cos \left (d x + c\right )^{4} - 4 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^8*csc(d*x+c)^9/(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

1/26880*(2310*cos(d*x + c)^7 + 490*cos(d*x + c)^5 - 8470*cos(d*x + c)^3 - 1155*(cos(d*x + c)^8 - 4*cos(d*x + c
)^6 + 6*cos(d*x + c)^4 - 4*cos(d*x + c)^2 + 1)*log(1/2*cos(d*x + c) + 1/2) + 1155*(cos(d*x + c)^8 - 4*cos(d*x
+ c)^6 + 6*cos(d*x + c)^4 - 4*cos(d*x + c)^2 + 1)*log(-1/2*cos(d*x + c) + 1/2) - 1536*(2*cos(d*x + c)^7 - 7*co
s(d*x + c)^5)*sin(d*x + c) + 2310*cos(d*x + c))/(a^2*d*cos(d*x + c)^8 - 4*a^2*d*cos(d*x + c)^6 + 6*a^2*d*cos(d
*x + c)^4 - 4*a^2*d*cos(d*x + c)^2 + a^2*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**8*csc(d*x+c)**9/(a+a*sin(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.37301, size = 369, normalized size = 2.1 \begin{align*} \frac{\frac{18480 \, \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right )}{a^{2}} - \frac{50226 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{8} - 10080 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 1680 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{6} + 3360 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 2520 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 672 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 560 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 480 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 105}{a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{8}} + \frac{105 \, a^{14} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{8} - 480 \, a^{14} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} + 560 \, a^{14} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{6} + 672 \, a^{14} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 2520 \, a^{14} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 3360 \, a^{14} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 1680 \, a^{14} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 10080 \, a^{14} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{16}}}{215040 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^8*csc(d*x+c)^9/(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/215040*(18480*log(abs(tan(1/2*d*x + 1/2*c)))/a^2 - (50226*tan(1/2*d*x + 1/2*c)^8 - 10080*tan(1/2*d*x + 1/2*c
)^7 - 1680*tan(1/2*d*x + 1/2*c)^6 + 3360*tan(1/2*d*x + 1/2*c)^5 - 2520*tan(1/2*d*x + 1/2*c)^4 + 672*tan(1/2*d*
x + 1/2*c)^3 + 560*tan(1/2*d*x + 1/2*c)^2 - 480*tan(1/2*d*x + 1/2*c) + 105)/(a^2*tan(1/2*d*x + 1/2*c)^8) + (10
5*a^14*tan(1/2*d*x + 1/2*c)^8 - 480*a^14*tan(1/2*d*x + 1/2*c)^7 + 560*a^14*tan(1/2*d*x + 1/2*c)^6 + 672*a^14*t
an(1/2*d*x + 1/2*c)^5 - 2520*a^14*tan(1/2*d*x + 1/2*c)^4 + 3360*a^14*tan(1/2*d*x + 1/2*c)^3 - 1680*a^14*tan(1/
2*d*x + 1/2*c)^2 - 10080*a^14*tan(1/2*d*x + 1/2*c))/a^16)/d